MULTIFUNCTION CONTROL PANEL

Ref. 1061/006A

INSTALLATION AND PROGRAMMING MANUAL
TABLE OF CONTENTS

1 GENERAL DESCRIPTION ... 6
 1.1 SYSTEM ARCHITECTURE ... 6
 1.2 SYSTEM DESCRIPTION AND ITS EXPANSIONS .. 6
 1.3 SYSTEM COMPONENTS .. 7
 1.3.1 1061/006A Control panel .. 7
 1.3.2 Management keypad with Led – 1061/025 ... 8
 1.3.3 Electronic key reader – 1061/334 and 1061/335 ... 8
 1.3.4 Proximity reader – 1061/434 and 1061/435 ... 8
 1.3.5 Electronic key – 1061/332 .. 9
 1.3.6 Transponder key – 1056/032 .. 9
 1.3.7 PSTN telephone communicator – 1061/002 .. 9
 1.3.8 GSM module – 1061/458 .. 9
 1.3.9 Speech synthesis board – 1061/012 .. 9
 1.3.10 Informative and environmental module – 1061/013 .. 10
 1.3.11 USB 2.0 interface – 1061/003 .. 10
 1.3.12 Software for programming and remote assistance – 1061/001 10
 1.3.13 Residential series adapters ... 11
2 SYSTEM DESIGN .. 12
 2.1 NOTES FOR A CORRECT INSTALLATION ... 12
 2.2 BATTERY DIMENSIONING .. 12
 2.3 CALCULATION OF THE TOTAL ABSORPTION OF THE SYSTEM 12
 2.4 CABLE DIMENSIONING AND POSITIONING ... 13
 2.4.1 Dimensioning .. 13
 2.4.2 Data bus cable .. 14
 2.4.3 Audio cable ... 14
 2.4.4 Coexistence with mains cables .. 14
3 INSTALLATION .. 15
 3.1 CONTROL PANEL .. 15
 3.1.1 Fixing .. 15
 3.1.2 Control panel options addition .. 18
 3.2 ELECTRONIC KEY READER AND PROXIMITY READER .. 22
 3.3 MANAGEMENT KEYPAD .. 23
4 CONNECTIONS .. 25
 4.1 BUS DEVICES CONNECTION .. 25
 4.2 CONTROL PANEL .. 26
 4.2.1 Motherboard ... 26
 4.2.2 Inputs connection and configuration .. 28
 4.2.3 Outputs connection .. 29
 4.2.4 Selecting the control panel operating mode .. 30
 4.3 KEYPAD ... 31
 4.3.1 Auxiliary input .. 31
 4.3.2 Tamper input .. 31
 4.4 MAINS AND BATTERY CONNECTIONS ... 32
5 PROGRAMMING ... 33
 5.1 PROGRAMMING PROCEDURE ... 33
 5.2 CONTROL PANEL HARDWARE PROGRAMMING INTERFACE 33
5.3 FIRST POWER-UP.. 34
5.4 SYSTEM CONFIGURATION VIA HARDWARE ... 34
5.4.1 Entering in programming mode ... 34
5.4.2 Main programming menu ... 35
5.4.3 Inputs programming menu ... 36
5.4.4 Outputs Programming Menu .. 37
5.4.5 Zones programming menu ... 38
5.4.6 Times programming menu ... 39
5.4.7 Keys programming menu .. 41
5.4.8 Codes programming menu ... 42
5.4.9 Keys / zones association menu ... 42
5.4.10 Codes / zones association menu ... 43
5.4.11 PSTN/GSM communicator programming menu .. 44
5.4.12 Vocal messages recording menu ... 47
5.4.13 Keypad auxiliary inputs programming .. 49
5.4.14 Exit from programming procedure .. 49
5.5 SYSTEM CONFIGURATION VIA SOFTWARE ... 50
5.5.1 USB interface mounting and pc connection ... 50
5.5.2 Basic parameters programming ... 51
5.5.3 Telephone communicators configuration ... 53
6 FINAL OPERATIONS .. 55
6.1 COMPLETION .. 55
6.1.1 Electronic key/proximity readers closing .. 55
6.1.2 Keypads closing .. 55
6.1.3 Control panel closing ... 55
6.2 TEST .. 55
7 MAINTENANCE .. 55
7.1 MAINTENANCE PROCEDURE ... 55
7.2 READER ... 56
7.2.1 Electronic key/proximity reader addition ... 56
7.2.2 Electronic key/proximity reader deleting ... 56
7.2.3 Electronic key/proximity reader replacement .. 56
7.3 KEYPAD ... 57
7.3.1 Keypad addition ... 57
7.3.2 Keypad deleting .. 57
7.3.3 Keypad replacement ... 57
7.4 DETECTOR .. 58
7.4.1 Detector addition ... 58
7.4.2 Detector deleting ... 58
7.4.3 Detector replacement ... 58
7.5 ADDITION OF A CONTROL PANEL OPTIONAL DEVICE ... 58
7.6 BATTERY REPLACEMENT .. 59
7.7 CLEANING ... 59
8 TECHNICAL CHARACTERISTICS .. 60
8.1 1061/006A CONTROL PANEL .. 60
8.2 1061/025 MANAGEMENT KEYPAD ... 61
8.3 ELECTRONIC KEY READER ... 61
8.4 PROXIMITY READER ... 61
8.5 1061/002 PSTN TELEPHONE COMMUNICATOR .. 61
8.6 1061/458 GSM MODULE ... 62
8.7 1061/012 SPEECH SYNTHESIS BOARD ... 62
8.8 1061/013 ENVIRONMENTAL LISTENING MODULE/MESSAGES REPEATER 62
9 EXAMPLE OF CONNECTION WITH NC LINES.. 63
10 FACTORY SETTINGS ... 65
ANNEX – SYSTEM FINAL CONFIGURATION ... 66
WARNING!

The operating mode this manual explains is compliant with the requests provided in EN50131 standard.

In order to enable this operating mode, the yellow jumper JP4 must be open (see figure 22).

Please see paragraph 4.2.4 *Selecting the control panel operating mode* for more details.

<table>
<thead>
<tr>
<th>Closed JP4</th>
<th>This operating mode is compliant with EN50131 standard Grade 1, please see the relevant manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open JP4</td>
<td>This operating mode is NOT compliant with EN50131 standard, which is explained in this manual.</td>
</tr>
</tbody>
</table>
1 GENERAL DESCRIPTION

The 1061 burglar system has been designed and developed for small-sized systems, used for example in residential areas and little companies (offices, shops, workshops and little factories) and can be easily adapted for different requirements.

Maximum compactness, flexibility and safety are the system main characteristics; its installation, use and programming procedures are user-friendly for both installer and users.

1.1 SYSTEM ARCHITECTURE

The system 1061 is equipped with 6 inputs, 4 outputs, and 4 zones.

The following functions are allowed:

- Communication on BUS line.
- Up to 4 zones, that can be freely associated and partially armed.
- Activation by keypads with code, electronic key or proximity key.
- User-friendly interface.
- Voice and digital communicators used for alarm information sending both to users and alarm reception centres.
- Capability to manage Anti-theft, Emergency and Technological functions.
- Local and remote system programming and check, by PC.
- Capability to check the system state also with DTMF.

1.2 SYSTEM DESCRIPTION AND ITS EXPANSIONS
1.3 SYSTEM COMPONENTS
1.3.1 1061/006A Control panel

The control panel 1061/006A manages the whole system by means of a microprocessor. Its features and performance are as follows:

<table>
<thead>
<tr>
<th>No. of Zones for free partial arming</th>
<th>No. of inputs for alarm detectors (lines)</th>
<th>Alarm outputs no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>2 clean relay outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 output for internal siren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 output for self-powered external siren</td>
</tr>
</tbody>
</table>

- 220 ÷ 240V~, 50/60 Hz power supply, with 12 V backup battery.
- Inputs configurable as balanced or fast (to connect directly the rolling shutter contact)
- Up to 8 command devices, that can be freely chosen between electronic key or transponder key readers (4 max) and keypads (4 max).
- 1 24H input (always active).
- Up to 10 keys
- Up to 10 codes, freely programmable (from 4 to 6 digits).
- Free association of inputs to zones
- Anti-theft function (with keypad only).
- Technological input for technological detectors (smoke, fire, flood, etc.).
- “Technological” alarm management (dedicated output in case of “technological alarm”).
- “Emergency” alarm management.
- Freely selectable entry and exit times.
- 1 delayed input.
- LED on the control panel front side to display state/occurred events.
- Capability to exclude each input by dedicated buttons on the control panel front.
- Input automatic exclusion after 8 consecutive alarms.
- Automatic exclusion of the open input at the activation time (function selectable by jumper).
- Alarm events log (browsable with PC)
- RS232-USB interface (optional).
- Local or remote control panel programming by PC with application software.
- PSTN telephone communicator (optional).
- GSM module (optional).
- Priority selection between PSTN/GSM, if in the control panel are installed both the modules.
- Remote management (system state inquiry, with DTMF commands or PC and system activation with DTMF commands).
- Remote assistance (system parameters configuration and change).
1.3.2 Management keypad with Led – 1061/025

The management keypad with LEDs allows to arm and disarm the system, also partially, by signalling the zones state on dedicated LEDs, with alarms storage and failures signalling.

The keypad manages up to 10 codes (from 4 to 6 digits) and is equipped with an internal buzzer, auxiliary input and tamper input. By entering on the keypad a special code (programmable), can be activated the anti-theft function.

The keypad is connected to the control panel with the 4-wire bus and can be wall mounted, with the provided box, or flush mounted on 3-modules box, using in both the cases the Simon Urmet Nea residential series frame and plate, provided with product.

1.3.3 Electronic key reader – 1061/334 and 1061/335

The reader allows to arm and disarm the system, also partially, with an electronic key; it is connected to the control panel with the 4-wire bus. A Simon Urmet series Nea adapter is provided with the key.

1.3.4 Proximity reader – 1061/434 and 1061/435

The proximity reader allows to arm and disarm the system, also partially, with a transponder key; it is connected to the control panel with the 4-wire bus. A Simon Urmet series Nea adapter is provided with the reader.
1.3.5 **Electronic key – 1061/332**

Programmable electronic key, to be used with the electronic key reader.

1.3.6 **Transponder key – 1056/032**

Programmable transponder key, to be used with the proximity reader.

1.3.7 **PSTN telephone communicator – 1061/002**

The PSTN telephone communicator can be programmed with the control panel function keys or with PC and allows to:
- Send, with an encoded digital link, the information concerning alarms and system state to the dedicated alarm reception centres.
- Send, paired with the speech synthesis card, vocal messages by telephone calls.
- Perform a remote check of the system, by DTMF commands.
- Perform a remote management of the system and check its operations by a dedicated application software.
- Environmental listening (paired with 1061/013).

1.3.8 **GSM module – 1061/458**

The GSM Dual Band module can be programmed with the control panel function keys or with PC; it allows to:
- Send, paired with the speech synthesis card, vocal alarm messages and SMS.
- Perform a remote check of the system, by DTMF commands.

The antenna is provided with the product.

1.3.9 **Speech synthesis board – 1061/012**

The speech synthesis board, paired with the PSTN telephone communicator or the GSM module, allows the alarm message recording.
1.3.10 Informative and environmental module – 1061/013

The informative and environmental listening module allows the environmental listening by a telephone call (the control panel must be provided with a PSTN telephone communicator) and the local playback of messages concerning system state, alarm, failure.

1.3.11 USB 2.0 interface – 1061/003

The USB 2.0 interface allows to connect a PC to the 1061/006A control panels for their programming (the programming and remote assistance software is needed).

1.3.12 Software for programming and remote assistance – 1061/001

The programming and remote assistance software allows to program with a PC the 1061/006A control panel (USB 2.0 interface is needed). The same software allows to perform remote assistance services on control panels equipped with PSTN telephone communicator.
1.3.13 Residential series adapters

To adapt the readers on the most common residential series, are used the suitable adapters provided in the kit for 1056, 1061 and 1063 series (product code: 1056/337). The kit is composed by: 1 BTicino Living International adapter, 1 BTicino Living adapter, 1 Vimar Plana adapter, 1 Vimar Idea adapter, 1 Gewiss Playbus adapter.
2 SYSTEM DESIGN

2.1 NOTES FOR A CORRECT INSTALLATION

The 1061/006A control panel must be placed in a position protected by burglar detectors. If it is needed the GSM module usage, it is necessary to verify in advance if, in the selected position, the GSM signal is good. To check it, verify the field strength using the GSM coverage test (see paragraph 5.4.11).

⚠️ WARNING: For GSM network coverage check, it is necessary to use the same mobile network carrier SIM as the one used in the GSM module. This because in the same place, coverage levels of various mobile network carriers can be very different, or even absent.

Management keypads, electronic key readers and proximity readers must be put in dry places, protected against bad weather conditions. These devices are daisy chained to the control panel with a single bus cable. The sequence used to connect them to the bus is irrelevant (devices are identified by a hardware address, not according to the connection sequence), so it is possible to use for the bus the most convenient and the fastest path for installation.

2.2 BATTERY DIMENSIONING

The system must be sized so as to guarantee, in case of a blackout, a minimum time of autonomy (it is suggested at least 12 hours). Therefore, in order to guarantee minimum duration of the battery, the system powered directly by the control panel must comply with the following requirements.

1061/006A control panel with 7.2 Ah battery.

<table>
<thead>
<tr>
<th>Autonomy</th>
<th>Absorption allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control panel*</td>
</tr>
<tr>
<td>12 hours</td>
<td>60 mA</td>
</tr>
<tr>
<td>24 hours</td>
<td>60 mA</td>
</tr>
</tbody>
</table>

* Control panel without communicators and interfaces.

⚠️ WARNING: Use batteries with UL 94 HB class inflammability or better.

2.3 CALCULATION OF THE TOTAL ABSORPTION OF THE SYSTEM

In order to calculate the total system absorption, proceed as follows:

- list all the necessary devices, with their quantity and maximum absorption per unit in stand-by (which is all available from the technical specifications);
- multiply the quantity and the absorption in order to get the subtotal for each device;
- sum all the partial totals to obtain the subtotal;
- add 10% to the subtotal for potential future upgrades;
- calculate the total.
The table below illustrates an example of how to calculate the total absorption:

<table>
<thead>
<tr>
<th>Device</th>
<th>Quantity</th>
<th>Max absorption:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control panel</td>
<td>1</td>
<td>60 mA</td>
<td>60 mA</td>
</tr>
<tr>
<td>PSTN Communicator</td>
<td>10 mA</td>
<td></td>
<td>... mA</td>
</tr>
<tr>
<td>GSM Module</td>
<td>30 mA</td>
<td></td>
<td>... mA</td>
</tr>
<tr>
<td>Speech synthesis</td>
<td>30 mA</td>
<td></td>
<td>... mA</td>
</tr>
<tr>
<td>Keypads</td>
<td>...</td>
<td>... mA</td>
<td>... mA</td>
</tr>
<tr>
<td>Readers</td>
<td>...</td>
<td>... mA</td>
<td>... mA</td>
</tr>
<tr>
<td>Expansion modules</td>
<td>...</td>
<td>... mA</td>
<td>... mA</td>
</tr>
<tr>
<td>IR detectors</td>
<td>...</td>
<td>... mA</td>
<td>... mA</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>... mA</td>
</tr>
<tr>
<td>+ 10% for future upgrades</td>
<td></td>
<td></td>
<td>... mA</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>... mA</td>
</tr>
</tbody>
</table>

Note: ▪ Magnetic contacts do not absorb electricity.
▪ The self-powered siren, when it sounds, draws electricity from its own battery.

! WARNING! To not overload the control panel battery, when the mains power supply is absent, plan to use the self-powered sirens and optical signals (equipped with their own battery).

2.4 CABLE DIMENSIONING AND POSITIONING

2.4.1 Dimensioning
The cable cross section must be calculated considering the most critical system power supply condition, equivalent to mains fail and backup battery just over the “flat battery” level (11.2 Vdc).
For example, if at full load conditions, on all the devices power supply terminals must be ensured at least 10.5 Vdc, the maximum voltage dropout admitted on the cables is 0.7 Vdc.

The calculation formula is:

\[V_c = 2 \times \text{length} \times R_m \times I_d \]

where:

\(V_c \) is the voltage dropout in Volt

\(\text{length} \) is the cable length, in metres (single wire)

\(R_m \) is the cable resistance in Ohm/m

\(I_d \) is the current required by the devices, in Ampere (value obtained by their technical sheets)

The values of copper cable resistance are:

<table>
<thead>
<tr>
<th>Cross section – mm²</th>
<th>0.22</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance – Ohm/m</td>
<td>0.0795</td>
<td>0.0350</td>
<td>0.0233</td>
<td>0.0175</td>
<td>0.0117</td>
</tr>
</tbody>
</table>
The following diagram can be useful to find the minimum cable section that is necessary.

WARNING: The diagram is used for a preliminary estimation; for an accurate calculation, use the formula described above. However, it is necessary to verify with a voltmeter, that the voltage measured on terminals of each device is not lower than the power supply voltage provided by the control panel or by the additional power supply unit (0.7 Vdc).

Using an alarm system cable with a section of 0.22 mm2 for the serial line (LA LB) and 0.5 mm2 for power supply (+, −), the maximum distance of peripherals is:

- 1061/334-/335 readers: 200 m
- 1061/434-/435 readers: 100 m
- 1061/025 keypad: 50 m

2.4.2 Data bus cable
For the bus is needed a 4-wire cable, and it is suggested to use a shielded cable for alarm system 4 x 0.22 mm2 + 2 x 0.5 mm2, in order to have available the wire pair for readers tampers contacts.

Bus maximum length can not exceed 500 m.

2.4.3 Audio cable
For the audio line, use a twisted pair. The audio line length can not exceed 100 m.

2.4.4 Coexistence with mains cables
Bus cable, audio bus and detectors cables can not be laid in conduits or tubes used for mains cables.
3 INSTALLATION

3.1 CONTROL PANEL

3.1.1 Fixing

Control panel opening
Open the control panel by unscrewing the screws using a Phillips screwdriver (PH0), the two flush mount fixing screws, by sliding up the lid, in order to release the ledges (Figure 1).

Figure 1 – Control panel opening
Opening holes for cables and holes for battery anchoring
On the control panel bottom, open the pre-fractured apertures for cables (power supply, detectors, sirens, bus, telephone line, audio line and for battery anchoring). Cable number and kinds depend on the system to be realized.

![Diagram of control panel with labeled apertures]

WARNING: When opening the pre-fractured apertures, take care not to damage the motherboard. For safety’s sake, it is suggested to remove the motherboard before opening apertures, as shown in the paragraph Motherboard removal.

A - Aperture for flush mount tube
B - Aperture for flush mount tube (electric power supply)
C - Aperture for external tube
D - Aperture for cable trunking
E - Plastic strap slot for battery anchoring

Figure 2 – Pre-fractured apertures for cable
WARNING: Battery must be anchored by using the provided plastic strap as in figure 3.

Wall mounting
The control panel must be placed in an interior, in a zone protected by the alarm system, on a dry, level wall. The control panel is provided with 4 fixing holes (A and B), accessible without removing the motherboard.

To fix the control panel follow the instructions below:
1. Place the control panel and mark the drilling point for the slot A.
2. Drill the wall, put a screw anchor and screw in its screw; it must stick out about 1cm.
3. Hang the control panel on the screw, place the control panel in horizontal position and mark the drilling point for slots B.
4. Remove the control panel, drill and put the remaining anchor screws.
5. Hang again the control panel and fix it with the screws, tightening also the screw of hole A. Slots B allows to compensate hole misalignments, if present, in order to fix the control panel perfectly horizontal.
Protection from tampering and removal
To guarantee the 1061/006A control panels protection from tampering and removal, it is necessary to use hole C for fastening as well.

![Figure 5 – Protection from tampering and removal](image)

3.1.2 Control panel options addition
The optional expansion modules are connected on the lower side of the motherboard, that can be removed from the control panel before any operations.

Note: All the operations performed with open control panel must be done by a skilled technical staff and after the whole system has been unpowered.

Motherboard removal
To remove the motherboard, unscrew the 6 screws shown in the figure.

![Figure 6 – Motherboard fixing screws](image)

To put again the motherboard in the control panel, place it again on its supports and screw in the fixing screws, without forcing, in order not to damage the printed circuit.
Position and use of expansion connectors for optional boards
The expansion connectors available on the rear of the motherboard are the following:

A - CON3 connector used for connection of 1061/002 PSTN module
B - CON2 connector used for connection of 1061/458 GSM module
C - CON7 connector used for connection of 1061/012 speech synthesis module

PSTN telephone communicator
To add the PSTN telephone communicator, follow the instructions below:
1. Remove, if necessary, the motherboard.
2. Press the 4 nylon pivot pins in the holes placed in the corners of the PSTN telephone communicator. Support pivot pins must be placed at the rear of the module (the side without electronic components and connection terminal pins).
3. Put the PSTN telephone communicator on the motherboard (see figure 7 to identify the connector position).
4. Connect the PSTN telephone communicator to the telephone line, according to the following diagram.

For the connection, use a twisted pair; no polarity must be respected.

⚠️ WARNING: The PSTN telephone communicator must be the first connected device, in order to seize the line in case of an alarm.
5. Connect the audio line (microphone), if present, to the MIC terminal pin of the PSTN telephone communicator, respecting polarities. For the audio line, use a twisted pair. Audio line must not exceed 100m. The following diagram shows how to connect the PSTN telephone communicator and the module for environmental listening/message repeater.

![Figure 9 – Connection diagram for environmental listening](image)

GSM module

To add the GSM module, follow the instructions below:

1. Remove, if necessary, the motherboard.
2. Press the 4 nylon pivot pins in the holes placed in the corners of the GSM module. The support pivot pins must be placed at the rear of the module (the side without electronic components and antenna connector).
3. Put the GSM module on the motherboard (see figure 7 to identify the position of the connector).
4. Put the antenna in the two housing slides present on the control panel side (to make the activation easier, blend lightly the antenna).

![Figure 10 – GSM antenna mounting](image)
5. Screw the antenna connector to the SMA connector on the GSM module.

⚠️ **WARNING**: *Screw the connector by hand, without tools, in order not to damage it.*

![GSM antenna connection](image)

Figure 11 – GSM antenna connection

6. Release the SIM holder by pressing the little button nearby, and open it.

![SIM holder opening](image)

Figure 12 – SIM holder opening

7. Put the SIM in the holder, taking care contacts are visible, and close again the holder.

⚠️ **WARNING**: *If necessary for the SIM and/or for the mobile network carrier, use a mobile to enable the SIM and disable its PIN before inserting the SIM in the GSM module*
Speech synthesis board
To add the speech synthesis board, follow the instructions below:
1. Remove, if necessary, the motherboard.
2. Press the 3 nylon pivot pins in the holes present on the speech synthesis board. The support pivot pins must be placed at the rear of the module (the side without electronic components and terminal strip).
3. Put the speech synthesis board on the motherboard (see figure 7 to identify the position of the connector).
4. Connect the audio line (loudspeaker), if present, to the SPK terminal pin of the speech synthesis board, respecting polarities. For the audio line, use a twisted pair. Audio line must not exceed 100 m.

The following diagram shows how to connect the speech synthesis card and the module for environmental listening/messages repeater.

![Connection diagram for messages repeater loudspeaker](image)

3.2 ELECTRONIC KEY READER AND PROXIMITY READER
The address of electronic key readers and proximity readers is configured with their rotary switch and no confirmation operations are needed. The address can have a value from 0 to 3 and must be unique for the group of electronic key readers and proximity readers. It is suggested to number in sequence the readers during their installation. In a system can be present up to 4 readers. For greater convenience, the addressing operation must be done before all the other readers install operations.

![Position of rotary switch and valid addresses](image)

The electronic key reader and the proximity readers can be directly put on supports for flush mounting or wall mounting boxes of Simon Urmet Nea residential series; they take up one module space. With specific adapters, present in catalogue, it is also possible to put them on flush mounting or wall mounting boxes of the most common residential series (BTicino Living International and Living, Vimar Plana and Idea, Gewiss Playbus); also in this case, they take up one module space. Readers must be placed in a dry place, protected by bad weather conditions.
According to CEI 79.2 standards, the readers must be kept in self-protected housing (housings with anti-removal and anti-opening tamper). If are used supports and plates of Simon Urmet Nea catalogue, a protection tamper (1069/416), designed for this purpose, is already available. The different tampers must be connected in series.

Figure 15 – Tamper for Simon Urmet Nea supports and plates

⚠️ **WARNING**: In order to connect to the control panel tamper line the tamper that protects the electronic key reader or the proximity reader, it is necessary to lay a suitable line. So, if readers are installed, it is suggested to use for the bus a 6-wire cable and use 2 of them for the tamper line.

3.3 MANAGEMENT KEYPAD

The management keypad can be placed both in a 3-modules flush mounting box (type 503) and in the provided wall mounting box. The keypad must be placed indoor, in a zone protected by the alarm system.

The keypad is provided with the following screws:

- **N° 3 M 3.5 x 22** for wall mounting with screw anchors
- **N° 2 M 3.5 x 19** for frame fixing on box Mod. 503
- **N° 2 M 3.5 x 10** for fixing on wall mounting box

Figure 16 – Keypad mounting
The keypads address is configured with their rotary switch and no other confirming operations are needed. The address can have a value from 0 to 3 and must be unique for the group of keypads. It is suggested to number in sequence the keypads during their installation. In a system can be present up to 4 keypads.

![Figure 17 – Position of rotary switch and valid addresses](image)

If the keypad is installed in a flush mounting box, it must be protected against tampering by mounting on the support the proper tamper (1069/416), that must be connected to the SAB input of the keypad. For tamper can be used both available housings present on the support.

⚠️ **WARNING:** *The protection for tamper spring Figure 19) must be cut both when the keypad is installed in the wall mounting box and in a flush mounting box.*

If the keypad must be housed in the provided wall mounting box, follow the instructions below:

1. Open one or both the cable apertures (Figure 18, A).

⚠️ **WARNING:** *In the wall mounting box are not present pre-fractured apertures for external tubes or conduits.*

2. Place the wall mounting box and mark the fixing holes (Figure 18, B) and the hole for the anti-removal tamper (Figure 18, C).

3. Drill the wall with a 5mm bit, put the provided anchor screws and fix the wall mounting box. For a correct installation, use 2 fixing holes at least and the hole for the tamper.

4. Cut the TAMPER protection on the keypad bottom to release the spring.

![Figure 18 – Wall mounting box for keypad](image)

![Figure 19 – Tamper protection](image)
4 CONNECTIONS

WARNING: All the connections must be performed when the system is unpowered. Connections providing power supply, mains and backup battery must be performed as last operation!

Do not weld the end of a stranded conductor in the points where the wire is subject to a contact pressure.

4.1 BUS DEVICES CONNECTION

Connect readers and keypads to the control panel with the 4-wire bus. The devices must be daisy chained to the bus. The order used to connect the devices (management keypads, electronic key readers, proximity readers) to the bus is not relevant. The bus total length (that is the sum of the single sections), according to cable dimensioning, must not exceed 500 m.

In all the devices, the bus terminal pins are identified as follows:

<table>
<thead>
<tr>
<th>LA</th>
<th>Bus line, data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Bus line, clock</td>
</tr>
<tr>
<td>+</td>
<td>Power supply 12V, positive</td>
</tr>
<tr>
<td>-</td>
<td>Power supply 12V, negative</td>
</tr>
</tbody>
</table>

WARNING: If in the system are installed electronic key readers or proximity readers, it is suggested to use for the bus a 6-wire cable. So, besides the 4 wire for bus, 2 wires will be available for the readers tamper line.

If the bus line length exceeds 100m and there are only 2 devices connected, it is necessary to connect, between the terminal pins “LA” and “-” and between “LB” and “-” of the two devices, 2.7 kOhm resistors (the same used for input balancing).
4.2 CONTROL PANEL

4.2.1 Motherboard

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| A | JP2 | Inputs self by-pass.
For details, see paragraph 4.2.2 *Inputs connection and configuration* |
| B | JP1 | Selection between balanced and NC inputs.
For details, see paragraph 4.2.2 *Inputs connection and configuration* |
| M | JP4 | Selecting the operating mode that is either complaint or NOT compliant with EN50131 standard.
Please see paragraph 4.2.4 *Selecting the control panel operating mode* for more details. |
| C | F2 | Rapid fuse for +SIR – F 3.15 A outputs |
| D | F3 | Bus power supply rapid fuse - F 1 A |
| E | F1 | +V line power supply rapid fuse inputs self by-pass - F 1 A |
| F | OK | Programming button OK |
| G | ↓ | Programming button NEXT (scroll) |
| H | ESC | Programming button ESC |
| I | | Programming display |
| L | | Comb connector for USB 2.0 interface connection |

Figure 22 – Control panel motherboard
TERMINAL PINS

<table>
<thead>
<tr>
<th>BUS</th>
<th>LA</th>
<th>Bus line, data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>Bus line, clock</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>Power supply 12 V, positive</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td>Power supply 12 V, negative</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Relay 2 output normally open contact</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>Relay 2 output common</td>
</tr>
<tr>
<td></td>
<td>NC2</td>
<td>Relay 2 output normally closed contact</td>
</tr>
<tr>
<td></td>
<td>NO1</td>
<td>Relay 1 output normally open contact</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>Relay 1 output common</td>
</tr>
<tr>
<td></td>
<td>NC1</td>
<td>Relay 1 output normally closed contact</td>
</tr>
<tr>
<td>-BT</td>
<td>Backup battery negative</td>
<td></td>
</tr>
<tr>
<td>+BT</td>
<td>Backup battery positive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER</th>
<th>C</th>
<th>Power supply control signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td>Power supply positive</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td>Power supply negative</td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>+V</td>
<td>+12 V</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Input 1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Input 2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Input 3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>Input 4</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>+V</td>
<td>+12 V</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>SAB</td>
<td>Tamper line 24h input</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>System state output and “memory reset” for detectors and sirens</td>
<td></td>
</tr>
<tr>
<td>+SR</td>
<td>Power supply for external self-powered siren (maximum current: 650 mA)</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>+SA</td>
<td>NC output for external self-powered siren</td>
<td></td>
</tr>
<tr>
<td>SIR</td>
<td>NO output for internal siren</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>Input 5</td>
<td></td>
</tr>
<tr>
<td>-V</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Input 6</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Control panel tamper connection</td>
<td></td>
</tr>
<tr>
<td>TMP</td>
<td>Control panel tamper connection</td>
<td></td>
</tr>
</tbody>
</table>

All the terminal pins marked as –V have the same potential; the same for the terminal pins marked as +V. Terminal pins duplication has been provided to make wiring operations easier.
4.2.2 Inputs connection and configuration
To inputs can be connected magnetic contacts, presence detectors, rolling shutters detectors, technological detectors and emergency detectors, with the following exceptions:
- To input 1 can not be connected rolling shutters or technological detectors.
- The burglar input 1 is the only delayed, all the other burglar inputs are immediate (for further details, see paragraph 5.4.2 Main programming menu).
- The tamper input (SAB) is always active (H24); it is an immediate input.

Inputs and tamper line can be configured as normally closed (NC) or balanced (single balancing). For balanced lines are used 2.7 kohm resistors, tolerance 1% (provided).

The balanced connection allows to detect short circuits attempts on the detectors lines, causing an alarm. The selection of connection mode is made with the jumper JP1 on the motherboard.

<table>
<thead>
<tr>
<th>Closed JP1</th>
<th>Lines and SAB input balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open JP1</td>
<td>Lines and SAB input normally closed (NC) (Factory setting)</td>
</tr>
</tbody>
</table>

⚠️ WARNING: The configuration is valid for all the lines; it is not possible to have some inputs or the tamper line configured as balanced and other ones normally closed.
It is also possible to configure the inputs, except tamper input, in self by-pass mode with the motherboard jumper JP2.

<table>
<thead>
<tr>
<th>Closed JP2</th>
<th>Self by-pass enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open JP2</td>
<td>Self by-pass disabled (Factory setting)</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**: Self by-pass activation is valid for all the inputs; it is not possible to have some inputs configured for self by-pass and other ones not configured.

With self by-pass enabled, all the inputs that are open during the alarm system activation are automatically excluded, without generating an alarm signalling. If, after the system has been activated, the open input is closed, it is again included among inputs controlled by the control panel, and an alarm is generated if it is opened again.

With self by-pass disabled, any input open when the system is activated generates an alarm.

⚠️ **WARNING**: Unused inputs must be connected to -RV with a wire, in case of NC lines, or with a 2K7 resistor, in case of balanced lines.

4.2.3 Outputs connection

Self-powered siren connection

When connecting a self-powered siren, do not exceed max. current values supplied by the control panel.

[Figure 24 – Self-powered siren connection diagram]
Internal siren connection
When connecting an internal siren, do not exceed the max. current values supplied by the control panel.

![Internal siren connection diagram](image)

Relay outputs connection
When connecting an external device to a control panel relay output, do not exceed the relay contacts typical voltage and current values.
The following figure shows the contacts position, according to the relay state.

![Relay contacts position](image)

“S” system state output connection
The output is used to manage alarm memories in detectors and sirens. In normal condition its voltage is 0 V; it is open when the system is activated.

4.2.4 Selecting the control panel operating mode
The control panel operating mode is selected through the jumper JP4 of the motherboard.

| Closed JP4 | This operating mode is compliant with EN50131 standard Grade 1, please see the relevant manual. |
| Open JP4 | This operating mode is NOT compliant with EN50131 standard which is explained in this manual. |

⚠️ **WARNING**: Selecting the JP4 jumper incorrectly makes significant operating differences.
4.3 KEYPAD

TERMİNAL PINS

<table>
<thead>
<tr>
<th>BUS</th>
<th>LA</th>
<th>Bus line, data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>Bus line, clock</td>
</tr>
<tr>
<td>+</td>
<td>Power supply 12 V, positive</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Power supply 12 V, negative</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>Auxiliary input</td>
<td></td>
</tr>
<tr>
<td>-RV</td>
<td>0 V</td>
<td></td>
</tr>
<tr>
<td>SAB</td>
<td>Tamper input</td>
<td></td>
</tr>
</tbody>
</table>

The keypad is provided with an auxiliary input and a tamper input. Both the inputs are locally managed by the keypad; an alarm, if present, is sent to the control panel via bus.

4.3.1 Auxiliary input

The auxiliary input is unbalanced (terminal pins In and –RV). The input is configured by default as “contact”, for example for a magnetic contact on a door, but it can also be configured to connect a rolling shutter detector.

⚠️ WARNING:

- Auxiliary inputs are always associated to the zone A.
- The auxiliary input generates only a generic burglar alarm, that can not be punctually located with dedicated Led.

4.3.2 Tamper input

The keypad tamper input (terminal pins SAB and –RV) is designed for connection of the front tamper installed on the support (for details, see paragraph 3.3 MANAGEMENT KEYPAD). The figure 27 shows the connection diagram.

Note: If the input IN is unused, it must be connected to ground (-RV).

Figure 27 – Connection diagram of inputs auxiliary and keypad tamper
4.4 MAINS AND BATTERY CONNECTIONS

The control panel power supply must be connected to 220–240 V~ mains with a 2-core mains cable with double insulation and a magnetothermic/differential switch. It is suggested to connect the control panel power supply before the residual current circuit breaker, in order to be able to disconnect mains and at the same time keep active the alarm system power supply. On the power supply unit, the screw terminal pins for 220–240 V~ cable are labelled as PH (phase) and N (neutral); in the near fin used for power supply fixing there is a slot for the cable tie passing, in order to block cables.

The power supply output (OUTPUT) is connected by default to the terminal pins POWER of the motherboard. The backup battery must be connected to cables with faston connectors already installed in factory: the red cable must be connected to the battery positive pole, the black cable to the negative pole.
5 PROGRAMMING

For commands and external signalling description, refer to the User Manual. The system programming can be performed directly on the control panel, with buttons and a little LCD display, or with a PC provided with Urmet EasyPro 1061/001 software and connected to the control panel via the USB port or a modem. Some parameters concerning the PSTN communicator can be changed only via PC.

5.1 PROGRAMMING PROCEDURE

The programming procedure consists in the following steps:

1. Assign an address to the bus devices, if not yet assigned;
2. Enter in programming mode (if the control panel has never been programmed before, see paragraph 5.3 FIRST POWER-UP);
3. Program inputs;
4. Program outputs;
5. Program zones;
6. Program alarm times, entry, exit, failure and technological;
7. Program keys (master and user);
8. Program codes (master and user);
9. Assign keys to zones;
10. Assign codes to zones;
11. Program PSTN/GSM communicator;
12. Record vocal messages.

Not all steps are necessary, because some of them depend on the presence, in the system, of particular bus devices or control panel expansions.

5.2 CONTROL PANEL HARDWARE PROGRAMMING INTERFACE

For programming procedure, as shown in figure 22, on the control panel motherboard are available:

- One 2-digits, 7-segments LCD display.
- One ESC button to return to the previous menu level or exit from programming mode in any time.
- One button to scroll items of the same menu level (the menu items structure is circular: at the last item, by pressing again the button, it is possible to return to the first one).
- One OK button to select/deselect a parameter or go to a secondary menu.

On the LCD display, the dot that appears down on the right side means that the displayed value is the one stored at the moment for the parameter selected for the configuration.

The result of each programming operation is acoustically signalled by:

- A “beep beep” to signal a successful programming procedure.
- Un A long “beep” to signal an unsuccessful programming procedure.
5.3 FIRST POWER-UP

At the first power-up:
- The inputs LEDs blink in sequence.
- On the LCD display appears for 2 seconds the control panel firmware version.
- Then the LCD display starts blinking.

At this moment perform as follows:
- Acquire a key (electronic or transponder) as Master key, by inserting or bring it near a reader.
Or:
- Enter on the keypad the code that will become the Master code (from 4 to 6 digits freely selectable) and confirm it by pressing the OK button on the keypad.

If in the system are present both keypads and readers, to acquire a Master key or set a Master code is indifferent.

After acquiring the Master key (or after setting the Master code), the LCD display stops blinking and shows the first item of the main menu. Now it is possible to program the control panel (go directly to paragraph 5.4.2 Main programming menu).

⚠️ WARNING: Write the programmed Master code, or mark the acquired Master key, because they are necessary to access to Maintenance functions.

5.4 SYSTEM CONFIGURATION VIA HARDWARE

5.4.1 Entering in programming mode

For enter in control panel programming mode, when it has been already programmed before, follow the instructions below:
1. Activate the system maintenance mode, as described in paragraph 7.1 MAINTENANCE PROCEDURE.
2. Keep the OK programming button pressed for 3 seconds.
3. On the LCD display appears for 2 seconds the control panel firmware version.
4. Wait until on the LCD display appears the first item of the main programming menu.

Now it is possible to program the control panel (go to paragraph 5.4.2 Main programming menu).
5.4.2 Main programming menu

- Inputs programming menu
- Outputs programming menu
- Zones programming menu
- Times programming menu
- Keys programming menu
- Codes/zones assignment menu
- Keys/zones assignment menu
- Codes programming menu
- PSTN/GSM communicator programming menu
- Vocal messages recording menu
With this menu it is possible to configure every input. Available configurations are the following:

- **Burglar**: it sends an burglar alarm if the circuit is opened (input configured as NC) or unbalanced (input configured as balanced) and the concerned zone is active. The circuit opening can be caused by a tamper attempt or by an alarmed detector. In case of balanced line, unbalancing caused by a short circuit activates a tamper alarm even if the system is disarmed. Possible types of burglar input are the following:
 - **Immediate (Lines 2-6)**: the burglar signal is sent as soon as the input is opened or unbalanced; it is the only type available for input from 2 to 6.
 - **Delayed (Line 1)**: the input opening or unbalancing starts the Entry Time, during which all the alarms signalled by the other inputs are ignored. If, when the Entry Time is elapsed, the alarm system has not been disarmed, the control panel activates the programmed alarm signalling. It is the only type available for input 1).

- **Rolling shutter**: the burglar alarm is generated when is detected by the rolling shutter detector a given number of pulses. Two levels of sensitivity are possible:
 - **High**: the alarm is generated when the rolling shutter has made a travel of about 15-20 cm.
 - **Low**: the alarm is generated when the rolling shutter has made a travel of about 40 cm.

- **Technological**: the input opening generates a technological alarm, even if the system is disarmed. The input is always active (H24). This is the configuration for the input to which are connected smoke, gas, flood or similar detectors, if present.

- **Emergency**: it is an input always active (24H); its opening generates a emergency alarm.

- **Not used**: it is the configuration to be used for inputs to which no detectors are connected (open input).

An input can have only one of the above described configurations.

The tamper input (tamper) can not be programmed nor excluded.
5.4.4 Outputs Programming Menu

Only the two auxiliary relay outputs 1 and 2 are programmable. The output configuration determines which alarms will cause the relay contact switching (excited relay).

Possible associations are:

- **Burglar alarm**: the relay switches (for the alarm time) when the control panel receives an Burglar alarm or a Tamper alarm.
- **Pre-alarm**: the relay switches when the input 1 is activated. The relay stays excited until the Entry time is elapsed.
- **Technological alarm**: the relay switches (for the alarm time) when the control panel receives a Technological alarm.
- **Emergency alarm**: the relay switches (for the alarm time) when the control panel receives an Emergency alarm.
- **Low battery/failure alarm**: the relay switches when occurs one of the following failures:
 - Low battery.
 - Failure on PSTN telephone line or no GSM network
 - Burnt fuse.
 - Bus line failure.

Failure signallings stay active until failure is removed.

To an output can be associated only one of the above mentioned alarms.
5.4.5 Zones programming menu

WARNING: Many inputs can be associated to one zone, but an input can be associated only to one zone. To associate an input to another zone, before it is necessary to dissociate it from the previous zone.

By default, all the control panel inputs are associated to zone A.
5.4.6 Times programming menu

- **Alarm**
 - OK 2 seconds
 - OK 60 seconds
 - OK 2 minutes
 - OK 3 minutes

- **Entry**
 - OK 8 seconds
 - OK 15 seconds
 - OK 30 seconds
 - OK 60 seconds

- **Exit**
 - OK 8 seconds
 - OK 15 seconds
 - OK 30 seconds
 - OK 60 seconds

- **230V mains fail alarm**
 - OK 1 minute
 - OK 9 minutes
 - OK 1 hour
 - OK 2 hours
 - OK 4 hours

- **Technological alarm**
 - OK 2 seconds
 - OK 30 seconds

WARNING: According to IMO standards, the alarm duration must be of 3 minutes. Lower durations are not compliant with IMO certifications, except in cases where a lower duration is strictly required by the Public Administration.

When pressing the OK button to confirm the selection, the LCD display blinks for 3 times and appears the dot down on the right corner.
It is possible to configure the following system times:

- **Alarm**: it is the alarm output activation time (sirens or other) in case of:
 - Burglar alarm, with armed system (Burglar outputs only).
 - Tamper alarm, also with disarmed system (Burglar outputs only).
 - Emergency alarm, also with disarmed system (Emergency outputs only).
 - Low battery/failure alarm, also with disarmed system (Low battery/failure alarm outputs only).

 2 seconds time must be used exclusively for test purposes.

- **Entry (Pre-alarm)**: it is the delay time starting when the delayed input (input 1) detects an Burglar attempt. During this time, alarm signals, if present, are ignored, allowing people to enter in protected premises to disarm, by keypad or key, the alarm system. Entry time is interrupted by disarming totally or partially the system. During entry time, the keypad buzzer sounds intermittently. When entry time is elapsed and the zone including the input 1 has not been deactivated, the control panel generates an Burglar alarm.

- **Exit**: it is the delay time starting when the system is partially or totally armed; when the time is elapsed, the system is activated. During this time, alarm signals, if present, are ignored, allowing people to leave the premises that will be protected by the alarm system. Exit time can be interrupted by disarming totally or partially the system. During exit time, the keypad buzzer sounds intermittently.

- **230 V mains fail alarm**: it is the time that must elapse without 230 V power supply before the control panel sends the related alarm vocal message, SMS and with digital protocol (depending on message kind, are required PSTN and GSM telephone lines, connections and a subscription with an alarm reception centre). Time calculation is reset every time 230 V power supply is available again for 5 consecutive minutes. 1 minute time setting must be used exclusively for test purposes.

- **Technological alarm**: it is the alarm outputs activation time (sirens and other), configured as technological, in case of Technological alarm; alarm is generated also with disarmed system.
5.4.7 Keys programming menu

To acquire a new electronic or transponder key, insert or bring it near the reader. In case of successful acquisition, the control panel LCD display blinks to confirm and a double acoustic signal is emitted (beep beep); on readers all Leds turn on for some seconds.

If is inserted a key already acquired, all readers Leds blink at the same time for some seconds.

The control panel can acquire up to 10 keys; the shown number is the key identifier.
5.4.8 Codes programming menu

To acquire a new code, follow the instructions below:

- Press OK button on motherboard.
- Enter on the keypad a numeric code from 4 to 6 digits and confirm by pressing OK button on the keypad.
- In case of successful acquisition, the control panel LCD display blinks to confirm and a double acoustic signal is emitted (beep beep) both in control panel and in keypads. The shown number is the code identifier.

The control panel can acquire up to 10 codes.

5.4.9 Keys / zones association menu

When a key is acquired, it is automatically associated to all the zones and so it is necessary to disassociate it from the zones where it must not be active. If needed, the key can be associated again to those zones afterwards.

To disable a key, it is sufficient to disassociate it from ALL the zones.
5.4.10 Codes / zones association menu

When a code is acquired, it is automatically associated to all the zones and so it is necessary to disassociate it from the zones where it must not be active. If needed, the code can be associated again to those zones afterwards.

To disable a code, it is sufficient to disassociate it from ALL the zones.
5.4.11 PSTN/GSM communicator programming menu

Main programming menu

- OK
- ESC

- Telephone cards enabling
- PSTN line
- GSM network

- Primary telephone channel
- PSTN line
- GSM network

Enter telephone number

- OK
- ESC

Enter telephone number

Instructions for telephone numbers programming are described after the diagram.

Delete telephone number

- OK
- ESC

Delete telephone number

Instructions for telephone numbers deleting are described after the diagram.

Telephone number - event association

- OK
- ESC

Telephone number - event association

- Robbery alarm
- ESC

Robbery alarm

- OK
- ESC

When the OK button is pressed to associate or disassociate the telephone number to the event (toggle selection), the LCD display blinks for 3 times. The dot down on the right disappears if the telephone number is disassociated, appears again if the telephone number is associated.

- Burglar alarm
- OK
- ESC

Burglar alarm

- Technological alarm
- OK
- ESC

Technological alarm

- Emergency alarm
- OK
- ESC

Emergency alarm

- 230V mains fail
- OK
- ESC

230V mains fail
When the OK button is pressed to associate or disassociate the telephone number to the event (toggle selection), the LCD display blinks for 3 times. The dot down on the right disappears if the telephone number is disassociated, appears again if the telephone number is associated.

Press OK button to start the test call on the selected telephone number. Press ESC button to stop the call.

Press OK button to start the GSM coverage test.
- 00 – No: GSM field (-100dBm<1<95dBm)
- 01 – Low: GSM field (-100dBm<1<95dBm)
- 02 – Medium: GSM field (-95dBm<1<90dBm)
- 03 – Good: GSM field (-90dBm<1<85dBm) GSM
- 04 – Excellent: GSM field (f<85dBm)

When the OK button is pressed to enable or disable the SMS sending (toggle selection), the LCD display blinks for 3 times. The dot down on the right disappears if SMS are disabled, appears again if SMS are enabled.
When an event occurs, the telephone communicator starts sending alarm calls to every telephone number associated to the event, in sequence.

If in the control panel there are both the PSTN telephone communicator and the GSM module, with Primary telephone channel parameter, it is possible to identify which device must be used as priority channel for alarm calls. If the primary telephone channel is not available, (for example for PSTN line failure or no GSM network), is automatically used the other one.

Telephone number entering
To enter a telephone number, follow the instructions below:
1. Press OK button to select the desired memory location (t1, t2 … t8).
2. Enter the telephone number, using the “arrow” button; digits scroll in sequence, character P inserts a 1 second pause.
3. Press OK button to confirm.
4. Repeat from step 1 until the whole telephone number has been entered.
5. Keep OK button pressed for 2 seconds to confirm the whole telephone number. The telephone number scrolls on LCD display in order to check it and appears the dot down on the right.

⚠️ **WARNING !!** The phone number “112” can not be used for alarm calls.

Check of a telephone number already programmed
To check a telephone number already programmed (the stored telephone numbers are indicated by the dot down on the right corner of LCD display), press OK button. The number will appear on display, one digit at a time, blinking on the right.

Telephone number deleting
Select the desired memory location (t1, t2 … t8) and keep OK button pressed for 2 seconds. The LCD display blinks for 3 times and disappears the dot down on the right.

⚠️ **WARNING:** Using a PC and the suitable software, it is possible to customize an higher number of telephone parameters. For further information, see paragraph 5.5.3 Telephone communicators configuration.
The speech synthesis board keeps in memory 18 vocal messages. By default, the board contains pre-recorded messages, that can be customized during installation. The only message which must be customized is the basic message, that must contain the following data: “family or firm name” where the system has been installed, “address and street number”, “town”. These data should be repeated twice at least. An example of basic message is: “Mario Rossi’s apartment, piazza Roma 1, Milano”.
The basic message is played before all the configured messages sent after an event has occurred.

Possible messages are the following:

<table>
<thead>
<tr>
<th>N.</th>
<th>Message</th>
<th>Event that activates the message</th>
<th>Max length</th>
<th>Customizable</th>
<th>Customizable vocal message (factory setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic message</td>
<td></td>
<td>15s</td>
<td>X</td>
<td>“Mister X,Y’s house, X,Y street”</td>
</tr>
<tr>
<td>2</td>
<td>Robbery alarm</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Robbery alarm”</td>
</tr>
<tr>
<td>3</td>
<td>Burglar alarm</td>
<td>Burglar and tamper</td>
<td>5s</td>
<td>X</td>
<td>“Alarm”</td>
</tr>
<tr>
<td>4</td>
<td>Technological alarm</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Technological alarm”</td>
</tr>
<tr>
<td>5</td>
<td>230V mains fail</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Mains fail”</td>
</tr>
<tr>
<td>6</td>
<td>230V mains return</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Mains return”</td>
</tr>
<tr>
<td>7</td>
<td>Failure alarm</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Failure alarm”</td>
</tr>
<tr>
<td>8</td>
<td>Emergency request</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Emergency request”</td>
</tr>
<tr>
<td>9</td>
<td>System total arming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>System total disarming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Zone A active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Zone B active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Zone C active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Zone D active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mains present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>No mains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Charged battery</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Charged battery”</td>
</tr>
<tr>
<td>18</td>
<td>Low battery</td>
<td></td>
<td>5s</td>
<td>X</td>
<td>“Low battery”</td>
</tr>
<tr>
<td>19</td>
<td>Code entering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Command executed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to record a message
To record a message, follow the instructions below:
1. Connect the provided earphone with microphone to the speech synthesis card.

![Figure 30 – Connection of earphone to speech synthesis card](image)

2. Scroll the programming menu until the memory location for the kind of message to customize is reached.
3. Press OK button to start recording; the LCD display starts blinking.
4. Pronounce clearly and distinctly the message to be recorded. When the available time is elapsed, the LCD display stops blinking and recording is interrupted.
5. If recording is not satisfactory, it is possible to do it again, by repeating the procedure from step 3.

How to play a message
To play a message, follow the instructions below:
1. Connect the provided earphone with microphone to the speech synthesis card.
2. Scroll the programming menu until the memory location for the kind of message to customize is reached.
3. Press OK button to start playback.

5.4.13 Keypad auxiliary inputs programming
By default the input is configured as "contact", for example for a magnetic contact on a door or an infrared detector, but it can also be configured to connect a rolling shutter detector.

How to set the auxiliary input for the contact
1. Disarm the system.
2. Put the keypad rotary switch on “F”.
3. Press twice the control panel “OK” button; a confirmation beep will be emitted.
4. Put back again the keypad rotary switch on its original address (position “0”, “1”, “2” or “3”).

How to set the auxiliary input for the rolling shutter detector
1. Disarm the system.
2. Put the keypad rotary switch on “F”.
3. Press twice the keypad “X” button; a confirmation beep will be emitted.
4. Put back again the keypad rotary switch on its original address (position “0”, “1”, “2” or “3”).

5.4.14 Exit from programming procedure
To exit from the programming procedure, it is sufficient to go to the main level of menus tree, by pressing ESC button repeatedly and then keep ESC button pressed for 3 seconds. The LCD display turns off and the parameters configured until that time will be stored in the control panel.
5.5 SYSTEM CONFIGURATION VIA SOFTWARE

Using a PC provided with Urmet EasyPro software, it is possible to program more easily 1061/006A control panel. To do it, connect the PC to the control panel via the USB 2.0 interface. With the same software it is possible to access to further PSTN telephone communicator and GSM module configuration parameters. In this way it is possible to perform a more detailed customization than the one obtained with the control panel programming menus.

5.5.1 USB interface mounting and pc connection

To mount the USB interface and connect the PC, follow the instructions below:

1. If necessary, put the system in maintenance mode, as described in paragraph 7.1 MAINTENANCE PROCEDURE.
2. Connect the USB interface to the motherboard, as shown in the following diagram.

![Figure 31 – USB 2.0 interface connection diagram](image)

3. Connect the PC to the interface, using the provided USB cable.

At the end of the programming procedure, simply disconnect the USB interface from the control panel motherboard.

⚠️ **WARNING:** It is assumed that the user is able to use the EasyPro software. For sections not described in this manual (for example, the connection and its parameters, creation of a new system, etc.), refer to the software user manual.
5.5.2 Basic parameters programming
To program locally system basic parameters, follow the instructions below:
1. Select the desired system from Plants list and press the button Settings.

2. On the display appears Settings: Input Lines/Outputs/Times that allows to configure system inputs, outputs and times.
The following parameters are configurable:

- **Input lines:**
 - **Description,** field where it is possible to enter an alphanumeric text used to identify more easily the input. Good descriptions could be: “Entrance door”, “Child room”, “Garage”, “Accounting department”, “Workshop”, etc.
 - **Configuration,** that allows to configure the input. For their meaning, see paragraph 5.4.3 *Inputs programming menu.* If “Rolling shutter” is selected as configuration, also the Sensitivity field is enabled.
 - **Zones,** where it is possible to associate/disassociate the input to the zones.

- **Areas,** where it is possible to associate/disassociate the relay outputs to the events. For their meaning, see paragraph 5.4.4 *Outputs Programming Menu.*

- **Times,** where it is possible to set the different timings used by the system. For their meaning, see paragraph 5.4.6 *Times programming menu.*

3. Press the button **Codes/Keys.** Appears the display **Codes and Key,** that allows to configure keypad codes and electronic or transponder keys.

The following parameters are configurable:

- **Codes:**
 - **Zones Association,** where it is possible to select zones which can be activated or deactivated by the code.

- **Keys:**
 - **Zones Association,** where it is possible to select zones which can be activated or deactivated by the key.
5.5.3 Telephone communicators configuration

To locally program basic parameters of the system, follow the instructions below:

1. Select the desired system from **Plants list** and press the button **Communicators**.

2. On the display appears **Communicators**, that allows to configure the PSTN telephone communicator and the GSM module.
The following parameters are configurable:

- **Phone options:**
 - **Communicators**, where it is possible to indicate if in the control panel are installed the PSTN telephone communicator, the GSM module or both of them. If both of them are installed, it is also possible to select, with priority, which one must be used first.
 - **Phone call check**, that allows to set the following parameters:
 - **Answer control**, that recognizes the call signal, after the number has been dialled. If the answer check is enabled, the communicator waits until the called number answers, before playing the alarm vocal message (if the call signal is not recognized, the alarm vocal message is played anyway, after some seconds from the end of the dialled telephone number). If disabled, the vocal message is played 2 seconds after the telephone number has been dialled.
 - **Tones control**, if enabled, it dials the number only after the dial tone has been detected; if disabled, it enters the number 3 seconds after the line has been seized. If the GSM communicator is installed, it enables the field test before the calls cycle.
 - **Incoming call rings**, that allows to set the rings number before the control panel answers an incoming call. If the rings number is set to “0”, incoming calls are ignored.
 - **Phone line test** tests, allows to select one of the following options:
 - **Disabled**, disables the test used to check the telephone line correct operation.
 - **Enabled without SAG alarm**, enables the automatic test for telephone line check (failure or no line). The test is performed each time the system is activated/deactivated (also partially). If the test is unsuccessful, no tamper alarm is generated.
 - **Enabled with SAG alarm**, enables the automatic test for telephone line check (failure or no line). The test is performed each time the system is armed/disarmed (also partially). If the test is unsuccessful, is generated not only the failure signalling, but also the tamper alarm.
 - **Phone numbers**:
 - **Phone number**, is the telephone number to be used. The number can be composed by 21 digits max.
 - **Call type**, used to indicate if the alarm message must be sent only as vocal message (Voice), as vocal and SMS (Voice + SMS) or numeric, if addressed to an alarm reception centre (IDP, ADF or SIA, according to the protocol used by the alarm reception centre). SMS messages will be sent only if the GSM module is present and has priority, and numeric calls to alarm reception centres only if the PSTN module is present and has priority.
 - As last step, select the alarm events associated to the telephone number, that will generate the alarm message sending.
6 FINAL OPERATIONS

6.1 COMPLETION

6.1.1 Electronic key/proximity readers closing
Install the electronic key/proximity reader in the suitable support. Fix the support to the flush or wall mounting box and put plates, if necessary.

6.1.2 Keypads closing
Screw the keypad support on the flush or wall mounting box. Put the provided Simon Urmet Nea plate on the support, taking care to close the front tamper by pressing it down.

6.1.3 Control panel closing
Close again the control panel with its lid and fix it with the two flush mount fixing screws. After closing the control panel tamper, the system exits from the maintenance phase.

6.2 TEST
At the end of installation and programming operations, perform the system test. In particular, it is necessary to verify if:

- The programmed keys activate and deactivate the burglar zones for which they are enabled.
- The programmed codes activate and deactivate the burglar zones for which they are enabled.
- The sensors detect burglar attempts.
- Sirens and other programmed outputs are activated in case of an alarm.
- The telephone communicators, if installed, send the programmed alarm calls.

7 MAINTENANCE

7.1 MAINTENANCE PROCEDURE
The system maintenance procedure allows to operate on the system components – as control panel, keypads, detectors, sirens – without siren alarm signalling or telephone calls sending. After entering in maintenance mode, the tamper line is disabled and so it is possible to open without problems the system devices.

The maintenance procedure can be activated with a Master key or a Master code.

To enter in the maintenance mode, follow the instructions below:
1. Totally disarm the system with a Master key or code.
2. Open the control panel within 2 minutes from disarming (the control panel tamper must be open).

The maintenance mode is signalled by a fast sequential blinking of LEDs on the control panel motherboard and on readers and keypads.

To exit from the maintenance mode, it is necessary to close again all the system components tampers and close the control panel (so also the control panel tamper is closed).
7.2 READER

7.2.1 Electronic key/proximity reader addition
To add a new reader, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Add the new device (bus extension, connections, address selection), by following instructions in chapters 2, 3 and 4.
6. Connect again the backup battery and power again the control panel.
7. Program the new reader.
8. Close the control panel to exit from the maintenance procedure.

7.2.2 Electronic key/proximity reader deleting
To delete a reader from the system, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Remove the device and verify the bus continuity, by connecting the isolated segments, if present.
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.

7.2.3 Electronic key/proximity reader replacement
To replace a reader, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Remove the old device and replace it with the new one, taking care to set the same address
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.
7.3 KEYPAD

7.3.1 Keypad addition
To add a new keypad, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Add the new device (bus extension, connections, address selection), by following instructions in chapters 2, 3 and 4.
6. Connect again the backup battery and power again the control panel.
7. Program the new keypad.
8. Close the control panel to exit from the maintenance procedure.

7.3.2 Keypad deleting
To delete a keypad, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Remove the device and verify the bus continuity, by connecting the isolated segments, if present.
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.

7.3.3 Keypad replacement
To replace a keypad, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Remove the old device and replace it with the new one, taking care to set the same address.
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.
7.4 DETECTOR

7.4.1 Detector addition
To add a detector to a control panel input, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Add the new detector, following its instructions. If the input to be used has already other detectors connected, the new device must be compatible with the existing ones. For further information, refer to instructions in chapter 4.
6. Connect again the backup battery and power again the control panel.
7. If the new detector has been connected to a unused input, perform the input configuration.
8. Close the control panel to exit from the maintenance procedure.

7.4.2 Detector deleting
To delete a detector, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Remove the detector.
6. Connect again the backup battery and power again the control panel.
7. If the detector was the only connected to the input, program the input as “Not used”.
8. Close the control panel to exit from the maintenance procedure.

7.4.3 Detector replacement
To replace a detector with an equivalent device, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Replace the old detector with the new one.
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.

7.5 ADDITION OF A CONTROL PANEL OPTIONAL DEVICE
To add an optional device to the control panel, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Add the optional device in the control panel, by following instructions in chapter 4.
6. Connect again the backup battery and power again the control panel.
7. Program the functions available with the new option.
8. Close the control panel to exit from the maintenance procedure.
7.6 BATTERY REPLACEMENT

To replace the control panel backup battery, follow the instructions below:
1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Unpower the control panel.
4. Disconnect the control panel backup battery.
5. Replace the old battery with a new one, with same technical characteristics.
6. Connect again the backup battery and power again the control panel.
7. Close the control panel to exit from the maintenance procedure.

⚠️ WARNING: Batteries are special waste material and their disposal is regulated by precise legal provisions; they must be taken to specific collection centres.

7.7 CLEANING

For devices cleaning, use a dry cloth.
8 TECHNICAL CHARACTERISTICS

8.1 1061/006A CONTROL PANEL

Nominal power voltage: ... 220-240 Vac , 50/60 Hz
Max absorption power at 230 V (1061/515): ... 0.6 A
1061/515 power output nominal voltage - with C open: .. 14.4 Vdc
1061/515 power output nominal voltage - with C closed: ... 11.4 Vdc
Max current deliverable 1061/515 power supply: .. 1.5 A
Ripple max 1061/515: .. 100 mV p.p. with I = 1A
Control panel operating voltage: .. 10.5 Vdc ÷ 15.0 Vdc
Max current absorbed by control panel board at 12 Vdc: ... 60 mA
(with relays U1, U2, and U3 not excited – default condition)
Max current absorbed by the motherboard: ... 130 mA
(with relays U1, U2, and U3 excited)
Installable battery: .. 12 V 7.2 Ah
Nominal voltage of battery charger: ... 13.8 Vdc
Max current supplied to charge battery: .. 650 mA limited by a self-resetting fuse
Max time for recharging battery to 80%: ... 24 hours
Battery flat threshold: .. 11.5 V ± 2%
Automatic test battery: .. every 3 hours (with mains)
Max current for external devices (keypads, detectors, sirens) taken from + V terminals:
Degree 1 – with 12 hours autonomy: .. 390 mA
(1040 mA, of which 60 mA for the control panel)
Degree 1 – with 24 hours autonomy: .. 170 mA
(1030 mA, of which 60 mA for the control panel)
Nominal voltage on the +SR terminal note1): .. 14.4 Vdc ± 1,5%
Max current deliverable from the +SR terminal: .. 200 mA limited by a self-resetting fuse
Max current deliverable from the +SIR terminal: ... 13.8 Vdc ± 1,5%
Max current deliverable from the +SIR terminal: limited by the fuse no. 2: 3.15 A fast-blow fuse
Nominal voltage on the + terminal: ... 13.8 Vdc ± 1,5%
Max current deliverable from the + terminal: limited by the fuse no. 3: 1A fast-blow fuse
Nominal voltage on the +V terminal: .. 13.8 Vdc ± 1,5%
Max. current deliverable from +V terminal: limited by the fuse no. 1: 1A fast-blow fuse
Ripple max on outputs + V with flat battery: ... 100 mV (0.7%)
Max current and voltage of relay contact switch of outputs U1 and U2: 1 A – 30 Vdc with resistive load
Tamperproof switch: ... 1 A – 24 Vdc
Max total length of control panel-peripheral serial Bus line (+ LA LB): 500 m
Programmable time entry: .. 8, 15, 30, 60 s
Programmable exit entry: .. 8, 15, 30, 60 s
Programmable alarm time: ... 2, 60 s, 2, 3 minutes
Failure signal: ... optical (LED) and electric for battery low and failure fuses
Type of memory for programming maintenance: .. Flash memory
Certified working temperature (EN50131 – Environmental class I, internal): 5°C + 40°C
Average relative humidity during operation: ... 75%
Storage temperature: .. -20°C + 60°C
Degree of protection of casing: .. IP40 / IK06
Dimensions (w x h x d): ... 340 x 240 x 89 mm
Weight (without battery): .. 1450 g

note 1): in case of blackout, the +SR does not supply voltage.
8.2 1061/025 MANAGEMENT KEYPAD

Working voltage: .. 10.5 ÷ 15 Vdc
Consumption (@12 V):
 In standby (inputs closed, LEDs and backlighting off): ... 20 mA
 Max. (inputs open, LEDs and backlighting on): ... 100 mA
Manufacturer declared working temperature: ... -5 ÷ +45°C, relative humidity 95% @ 45°C
Certified working temperature: ... -5 ÷ +40°C
Storage temperature: .. -20 ÷ +70°C
Max dimensions (h x w x d): .. 91 x 125 x 34 mm
Weight: .. 200 g

8.3 ELECTRONIC KEY READER

Key codes number: ... 72 millions of billions
Nominal voltage: .. 12 Vdc
Working voltage: ... 10.5 ÷ 15 Vdc
Consumption (@12 V):
 In standby: .. 7.5 mA
 Max.RMS (with LEDs on): ... 16 mA
Working temperature: .. -25 ÷ +55°C
Protection degree: .. IP40
Max dimensions (h x w x d), without adapters: .. 42.5 x 22 x 51 mm
Lid: ...ABS, grey anthracite

8.4 PROXIMITY READER

Key codes number: .. 281.000 billions
Nominal voltage: .. 12 Vdc
Working voltage: ... 10.5 ÷ 15 Vdc
Consumption (@12 V):
 In standby: .. 36 mA
 Max. (with LEDs on): .. 50 mA
Working temperature: .. -25 ÷ +55°C
Protection degree: .. IP40
Reading distance: ... 0 ÷ 1,5 cm
Max dimensions (h x w x d), without adapters: .. 42.5 x 22 x 51 mm
Lid: ...ABS, grey anthracite

8.5 1061/002 PSTN TELEPHONE COMMUNICATOR

Power supply nominal voltage: .. 12 Vdc
Consumption:
 In standby: .. 10 mA
 Max. with seized line: ... 70 mA
Manufacturer declared working temperature: ... -5 ÷ +45°C, relative humidity 95% @ 45°C
8.6 1061/458 GSM MODULE

Working voltage: ... 3.3 ÷ 4.8 Vdc
Consumption:
 Idle Mode: ... 30 mA
 Speech mode: ... 300 mA
 Max: ... < 2.5 A
 Sleep mode: ... 20 mA
Output power: ... Class 4 (2W) for E-GSM 900
 Class 1 (1W) for GSM 1800
Manufacturer declared working temperature: .. -5 ÷ +45°C, relative humidity 95% @ 45°C
Certified working temperature: .. +5 ÷ +40°C

8.7 1061/012 SPEECH SYNTHESIS BOARD

Power supply nominal voltage: ... 5 Vdc
Consumption:
 Max. in standby: ... 30 mA
 Max. during message recording or playback: ... 50 mA
Manufacturer declared working temperature: .. -5 ÷ +45°C, relative humidity 95% @ 45°C
Certified working temperature: .. +5 ÷ +40°C

8.8 1061/013 ENVIRONMENTAL LISTENING MODULE/MESSAGES REPEATER

Working voltage: ... 12 Vdc
Max. consumption: .. 35 mA
Environmental microphone: ... electret -60 dB
Loudspeaker: .. 45 W 0.5 W
Manufacturer declared working temperature: .. -5 ÷ +45°C, relative humidity 95% @ 45°C
Protection degree: ... IP30
9 EXAMPLE OF CONNECTION WITH NC LINES
<table>
<thead>
<tr>
<th>MAX LOAD</th>
<th>MAX LINE LENGTH 50 m</th>
<th>MAX LINE LENGTH 100 m</th>
<th>MAX LINE LENGTH 150 m</th>
<th>MAX LINE LENGTH 200 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP TO 25 mA</td>
<td>0.22 mm²</td>
<td>0.22 mm²</td>
<td>0.22 mm²</td>
<td>0.22 mm²</td>
</tr>
<tr>
<td>UP TO 45 mA</td>
<td>0.22 mm²</td>
<td>0.22 mm²</td>
<td>0.50 mm²</td>
<td>0.50 mm²</td>
</tr>
<tr>
<td>UP TO 50 mA</td>
<td>0.22 mm²</td>
<td>0.22 mm²</td>
<td>0.50 mm²</td>
<td>0.75 mm²</td>
</tr>
<tr>
<td>UP TO 60 mA</td>
<td>0.22 mm²</td>
<td>0.50 mm²</td>
<td>0.50 mm²</td>
<td>0.75 mm²</td>
</tr>
<tr>
<td>UP TO 90 mA</td>
<td>0.22 mm²</td>
<td>0.50 mm²</td>
<td>0.75 mm²</td>
<td>1 mm²</td>
</tr>
<tr>
<td>UP TO 120 mA</td>
<td>0.50 mm²</td>
<td>0.75 mm²</td>
<td>1 mm²</td>
<td>1.50 mm²</td>
</tr>
<tr>
<td>UP TO 170 mA</td>
<td>0.75 mm²</td>
<td>1 mm²</td>
<td>1.50 mm²</td>
<td>2.50 mm²</td>
</tr>
<tr>
<td>UP TO 220 mA</td>
<td>1 mm²</td>
<td>1.50 mm²</td>
<td>2.50 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>UP TO 250 mA</td>
<td>1 mm²</td>
<td>2.50 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>UP TO 300 mA</td>
<td>1.50 mm²</td>
<td>2.50 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>UP TO 500 mA</td>
<td>2.50 mm²</td>
<td>4 mm²</td>
<td>NOT SUGGESTED</td>
<td>NOT SUGGESTED</td>
</tr>
</tbody>
</table>

NOTE F.046:
Set N. 8 DIP SWITCH in ON position

NOTE F.064: NC connection of detector Ref.1033/0135 allow ANTI-MASKING function only if system is ON

VX.008 – Connect the device to a filter and power line protection device.

![Diagram](image_url)
10 FACTORY SETTINGS

To reset the control panel to factory settings (reset), follow the procedure below:

1. Activate the system maintenance mode (see paragraph 7.1 MAINTENANCE PROCEDURE).
2. Open the control panel.
3. Keep the arrow button pressed for 10s.
4. On the display appears the message \(\text{reset default} \).
5. Press OK button.
6. On the display appears the software version and then it blinks 15.
7. Insert a Master key or enter a Master code and keep on programming.

NOTE: The reset to factory parameters deletes ALL the settings previously present.

<table>
<thead>
<tr>
<th>CONTROL PANEL UNIT PARAMETERS</th>
<th>Normally closed (NC) (programmable with JP1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection mode of inputs and tamper line</td>
<td>Disabled (programmable with JP2)</td>
</tr>
<tr>
<td>Inputs self by-pass</td>
<td>Line 1 delayed (not programmable)</td>
</tr>
<tr>
<td>Inputs types</td>
<td>Line 2-6 immediate (not programmable)</td>
</tr>
<tr>
<td>Inputs configuration</td>
<td>Burglar</td>
</tr>
<tr>
<td>Output 1</td>
<td>Burglar/tamper alarm</td>
</tr>
<tr>
<td>Output 2</td>
<td>Failure/Low battery alarm</td>
</tr>
<tr>
<td>Inputs association</td>
<td>All associated to associated to zone A</td>
</tr>
<tr>
<td>Auxiliary inputs association (Keypad)</td>
<td>All associated to associated to zone A (not programmable)</td>
</tr>
<tr>
<td>Burglar alarm duration</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Entry time</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Exit time</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Mains fail for 230 Vac mains fail alarm activation</td>
<td>1 hour</td>
</tr>
<tr>
<td>Technological alarm duration</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Keys association</td>
<td>To all zones</td>
</tr>
<tr>
<td>Code association</td>
<td>To all zones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TELEPHONE COMMUNICATORS PARAMETERS</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSTN Module</td>
<td>Disabled</td>
</tr>
<tr>
<td>GSM Module</td>
<td>Disabled</td>
</tr>
<tr>
<td>Answer check</td>
<td>Disabled</td>
</tr>
<tr>
<td>Tones check</td>
<td>Disabled</td>
</tr>
<tr>
<td>Rings number for answer to incoming calls</td>
<td>0</td>
</tr>
<tr>
<td>Telephone line automatic tests</td>
<td>Disabled</td>
</tr>
<tr>
<td>Alarms/Telephone numbers association</td>
<td>No</td>
</tr>
<tr>
<td>SMS sending</td>
<td>Disabled</td>
</tr>
<tr>
<td>Type of message</td>
<td>Vocal</td>
</tr>
</tbody>
</table>
ANNEX – SYSTEM FINAL CONFIGURATION

CONTROL PANEL CONFIGURATION

<table>
<thead>
<tr>
<th>Inputs and tamper connections mode</th>
<th>Normally closed (NC)</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs self by-pass</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

INPUTS CONFIGURATION

<table>
<thead>
<tr>
<th>Input</th>
<th>Burglar (L1 only delayed, all the other only immediate)</th>
<th>Rolling shutter</th>
<th>Technological</th>
<th>Emergency</th>
<th>Not used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>□</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>□</td>
</tr>
<tr>
<td>L2</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>L3</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>L4</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>L5</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>L6</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

n.a. = not available

OUTPUTS CONFIGURATION

<table>
<thead>
<tr>
<th>Output</th>
<th>Burglar alarm</th>
<th>Pre-alarm</th>
<th>Technological alarm</th>
<th>Emergency alarm</th>
<th>Low battery/failure alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>U2</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

ZONE/INPUTS ASSOCIATION

<table>
<thead>
<tr>
<th>Zone</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
</tr>
<tr>
<td>Zone A</td>
<td>□</td>
</tr>
<tr>
<td>Zone B</td>
<td>□</td>
</tr>
<tr>
<td>Zone C</td>
<td>□</td>
</tr>
<tr>
<td>Zone D</td>
<td>□</td>
</tr>
</tbody>
</table>

PROGRAMMED TIMES

<table>
<thead>
<tr>
<th>Event</th>
<th>□ 2 seconds</th>
<th>□ 60 seconds</th>
<th>□ 2 minutes</th>
<th>□ 3 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry</td>
<td>□ 8 seconds</td>
<td>□ 15 seconds</td>
<td>□ 30 seconds</td>
<td>□ 60 seconds</td>
</tr>
<tr>
<td>Exit</td>
<td>□ 8 seconds</td>
<td>□ 15 seconds</td>
<td>□ 30 seconds</td>
<td>□ 60 seconds</td>
</tr>
<tr>
<td>230 Vac mains fail alarm</td>
<td>□ 1 minute</td>
<td>□ 9 minutes</td>
<td>□ 1 hour</td>
<td>□ 2 hours</td>
</tr>
<tr>
<td>Technological alarm</td>
<td>□ 2 seconds</td>
<td>□ 30 seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ZONES/KEYS ASSOCIATION

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone A</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone B</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone C</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone D</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

ZONES/TELEPHONES CODES ASSOCIATION

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone A</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone B</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone C</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone D</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEPHONES

<table>
<thead>
<tr>
<th>Telephone memory</th>
<th>Telephone number</th>
<th>Associated alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Robbery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burglar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technological</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230 V fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230 V return</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low battery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charged battery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary telephone channel | PSTN | GSM
SMS sending | enabled | disabled
Rings number for answer to incoming calls